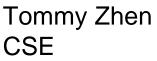


University of Massachusetts, Amherst College of Engineering

ITS LIT Preliminary Design Review Senior Design Project '17

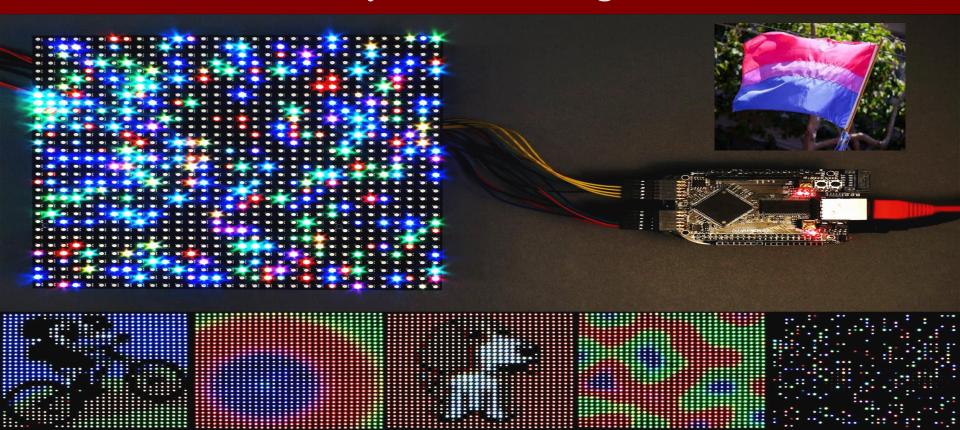
Department of Electrical and Computer Engineering


Meet The Team

Advisor: Professor David McLaughlin

Michael Polin CSE

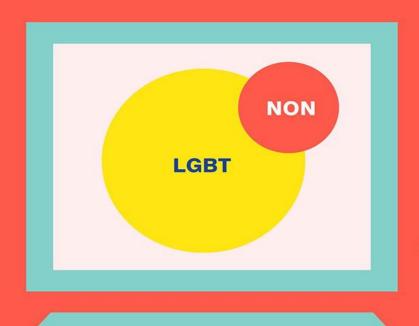
Patrick Browne EE



varun Menon FF

Emma Bryce EE

ITS LIT Interactive Timed Synchronized Lights In Technicolor


Create a semi-permanent nighttime LED display mounted on a window at DuBois Library or the Old Chapel that exhibits LGBT+ pride-related images amongst other presets that are controlled by the public through a mobile app.

Problem

- Discrimination against LGBT+ students and other groups
- Invisibility and erasure of identities
- Out at school but not at home
- Coming out in college
- "Otherness"

Problem

Roughly threequarters (73%) of LGBT youth say they are more honest about themselves online than in the real world.

HUMAN RIGHTS CAMPAIGN_©

www.hrc.org/youth

#LGBTYOUTH

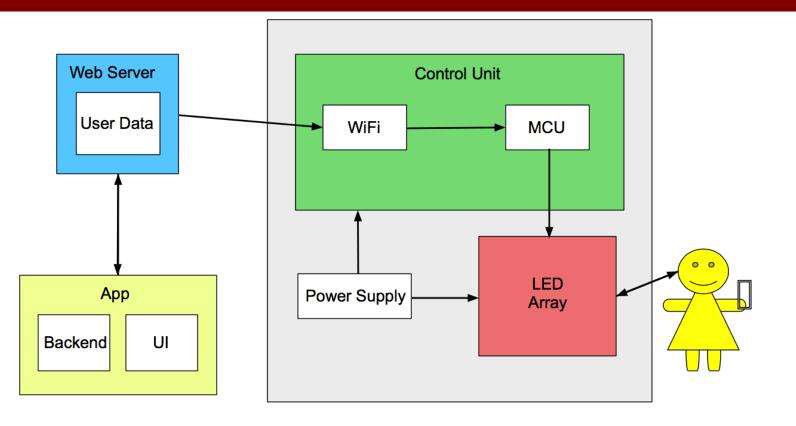
Application & Impact

Social Impact:

- Fosters and sends message of LGBT inclusion
- Attracts visiting HS students and current UMass students to ECE
- Cultivates campus wide cohesiveness
- "Gives back" to campus community

Application & Impact

Personal Impact:


- Interactive decorative display
- App allows users to dynamically change and update the panel
- Potential to replace posters and tapestries in dorm rooms

Requirements

- App
- Server monitored by controller
- Limited delay
- Query
- Display should be of a size that can be viewed clearly from below—around 3' x 3'
- Complete set of LGBT+ pride flags

Block Diagram

Block 1: App

- The interactive app will allow users to choose from a host of presets to change the designs on the LED panel
 - Easy navigation
 - Real time communication between app, server and microcontroller
 - Wifi protocols
- The app will send the image to a server, which in turn communicates with the microcontroller
- Option to add administrator who can add custom images

Queuing

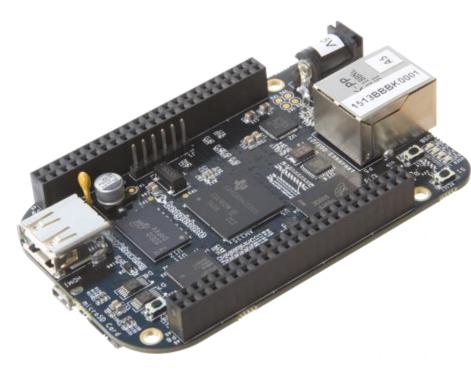
- App will be available for download on respective app store
- Users will be able to change presets as they pass by the public installation
- App handles requests based on timing of request
- Consecutive requests will be stored in a queue
- There will be a 'minimum time' before the preset is changed
- App also handles overloading, and makes sure one preset doesn't dominate

Block 1: App

- We will have one app complete and if time permits, we will develop the second one as well iOS App
 - Will be developed using Swift (similar to objective C)

Android App

Will be developed using Android SDK



Block 2: Server

- Provide temporary storage for presets/commands between app and controller
- Handles potential traffic if multiple users input at similar times

Block 3: Microcontroller

- Accepts input from the server
- Connects to wifi
- Must be able to accept an image and reformat it to fit our panel size
- Must also be able to coordinate the panels to display the image accepted
- Must have enough processing power

Block 4: LED Array Panel

- Receives input from the microcontroller
- 32 by 32 or 64 by 64 LED's
- Displays the picture by using each LED as a pixel
- Use multiple panels that can be daisy chained together to form a bigger panel
- Installed Indoors
- Pixel Pitch(Resolution)

101	0	101	Ö	0	10			0	Ö	Ö	Ö	0	10	0	0		•	0	ŏ	Ö	Ö	Ó	Ö	0	0	0	0	0	()	C
0	101	0	O	0	0	0	0	C	0	0	0	0		0	0	0	0	0	0	0		0	Ö	0	0	0	0	0	0	ľ
	0	101	0	0		0	0	0	0		0	10	0	O	0	0	0	0	10	0	0	0	0	0		0	0		0	ß
	0	0	0		0	0	0	0	0	0	0	0	0		0		0	0	0	0	0			0	0	0	0	0		K
	-	101	Q	0		0		0	-	0		0	0		See.	0		0	0	0	0	0		0	0				0	
			0	0	0		Q	0	•			0	0		0		0	0		0		0		()	0	0	()		0	
		0	0	0	0	0	0				0							0	•					10				0		(
												0	0	0	0	0	(O)	0	0		0		0		0	0	0	(O)		1
												·••	0	0	0	0	0	0				0	0		0	· · ·	0	0		1
							H			- 10					1		H		H								Н		0	
0	0				0			0	0	1	H	0	H		1	0	1	1	H	1	1	1	H	1	0	ň	H		Contraction of	ľ
10						0					0	0		0	0	1	1	1	-	ň			0	1	ñ	H	-	H	-	1
10	0	0	0	0	0			0	0	0	0	0	0	1	0	0	0	0	0	0	10	0	C	0	0	n	h	-	(0)	ſ
1	0		0	0	0	0	0	0	0	0	0		0	0	0	10	0	0	Ō	10	0	0	T	0	Ö	0	T	10	Ô	1
0	0	0	0	0	0	0		0	0	0	-	0	0	-		-	-	0	n	-		n	0	1	0	10	n	10	10	1

Cost

Item	Quantity	Unit Cost	Total Cost
LED array	9+	\$40.00	\$360.00+
Raspbery Pi	1	\$40.00	\$40.00
BeagleBone	1	\$55.00	\$55.00
Smart Phone	1	N/A	N/A
Software (Xcode, etc)	N/A	N/A	N/A
WiFi USB	1	\$10.00	\$10.00
Total			\$465.00

Design Alternatives

- Controller
 - Raspberry Pi vs Beaglebone
- Server
 - $\circ~$ Third Party Server vs UMass Server
- App
 - $\circ~$ iOS vs Android
- Ethernet vs WiFi

MDR Deliverables

- Microcontroller drives display on LED array
 - Display can be controlled via laptop
- Server created
 - Microcontroller interaction tested
- Basic app functionality
 - GUI and user input
- Beginning vetting with school or faculty member

Questions?

